

Hannes Federrath

> Logging and Observation of user actions

Logging of e-mail communication

>tail syslog
Oct 15 16:32:06 from=<feder@tcs.inf.tu-dresden.de>, size=1150
Oct 15 16:32:06 to=<hf2@irz.inf.tu-dresden.de>

Logging of web access

wwwtcs.inf.tu-dresden.de>tail access_log
amadeus.inf.tu-dresden.de - - [15/Oct/1997:11:50:01] "GET
/lvbeschr/winter/TechnDS.html HTTP/1.0" - "http://wwwtcs.inf.tudresden.de/IKT/" "Mozilla/3.01 (X11; I; SunOS 5.5.1 sun4u)"

Linkage of user actions

ithif19 logs 17 >finger @amadeus.inf.tu-dresden.de						
[amadeus.inf.tu-dresden.de]						
Login	Name	TTY	Idle	When		
feder	Hannes Federrath	console		Wed 11:56		

> Logging and Observation of user actions

Log	(213.68.175.4)	 Heute 16:17 Uhr
>tail	p3e9baca6.dip.t-dialin.net (62.155.172.166)	 Heute 13:41 Uhr
Oct 1 Oct 1	voss.mat.tu-harburg.de (134.28.61.22)	 Gestern 14:13 Uhr
	pec-120-252.tnt10.me2.uunet.de (149.225.120.252)	 Gestern 13:50 Uhr
Log	(212.100.36.50)	 Gestern 13:35 Uhr
_	gw3.telekom.de (194.94.109.2)	 Gestern 9:32 Uhr
wwwto amade	wzl214.wzl.rwth-aachen.de (137.226.193.214)	 Gestern 9:09 Uhr
/lvb	n2-146-189.dhcp.mcphu.edu (144.118.146.189)	 Gestern 4:04 Uhr
dres	acb08d7f.ipt.aol.com (172.176.141.127)	 04.06.2001 16:46 Uhr
	pd9009416.dip.t-dialin.net (217.0.148.22)	 04.06.2001 13:44 Uhr
Lin	dialppp-7-56.rz.ruhr-uni-bochum.de (134.147.7.56)	 04.06.2001 8:24 Uhr
ithi:	(194.64.244.18)	 03.06.2001 23:19 Uhr
[amao	(62.2.58.8)	 03.06.2001 20:25 Uhr
Logiı fede:	f-226-182.bielefeld.ipdial.viaginterkom.de (62.180.182.226)	 03.06.2001 10:30 Uhr

> Anonymity in the Internet is an illusion

% Know your enemy!

- Competitors
- Security Agencies of foreign countries
- 🗵 Big Brothers
- ➢ Neighbors…

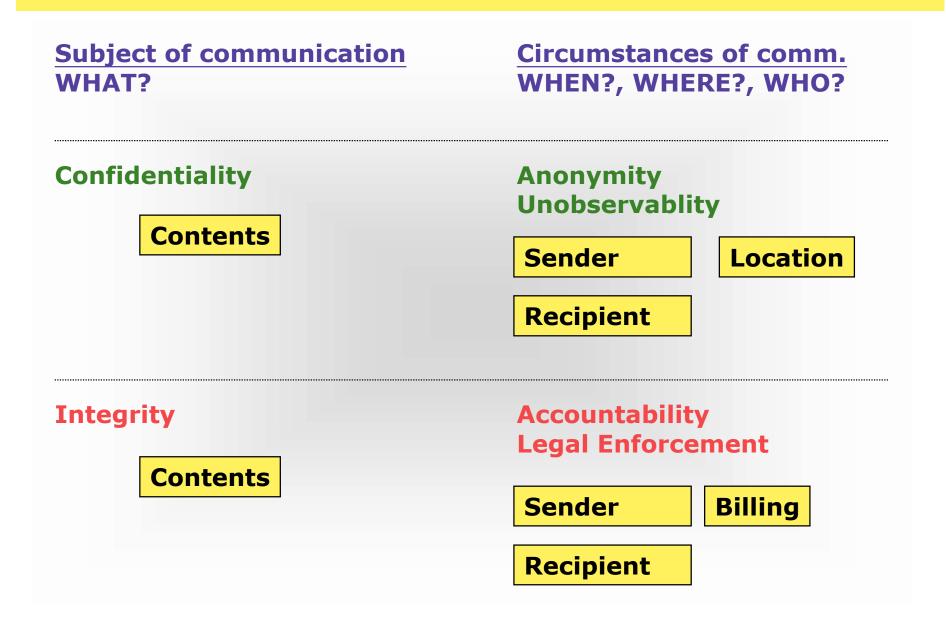
High frequency radio interception antenna (AN/FLR9)

http://www.iptyroporte.mompil.com/io2lyroport.htm

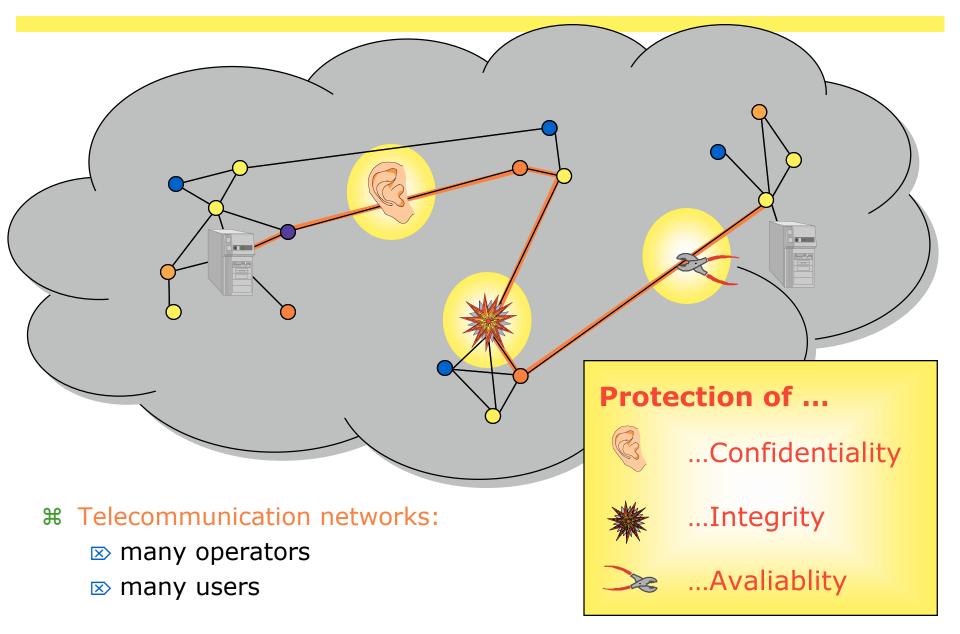
http://www.iptvreports.mcmail.com/ic2kreport.htm

> Anonymity in the Internet is an illusion

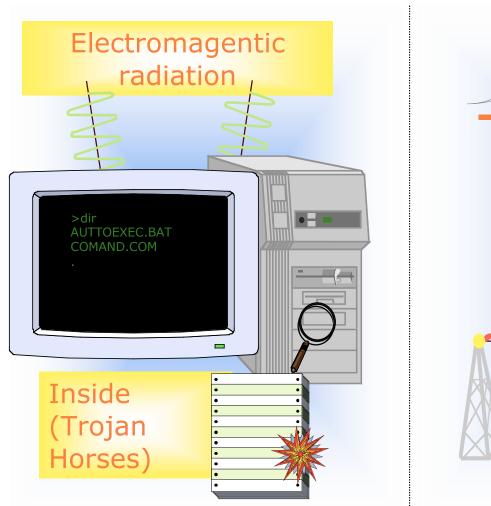
% Know your enemy!


- Competitors
- Security Agencies of foreign countries
- 🗵 Big Brothers
- ➢ Neighbors…

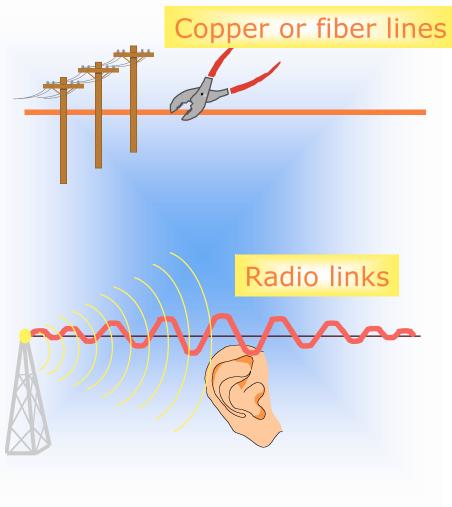
Bad Aibling Interception facility of the ECHELON system


Source: http://ig.cs.tuberlin.de/w2000/ir1/referate2/b-1a/

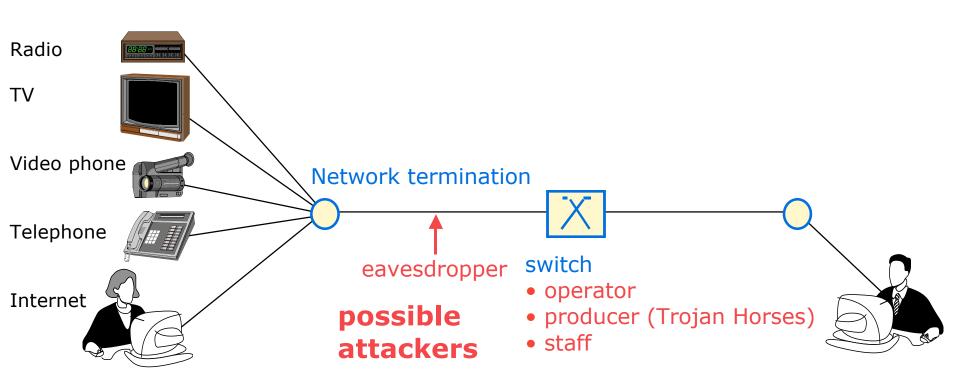
> Protection Goals

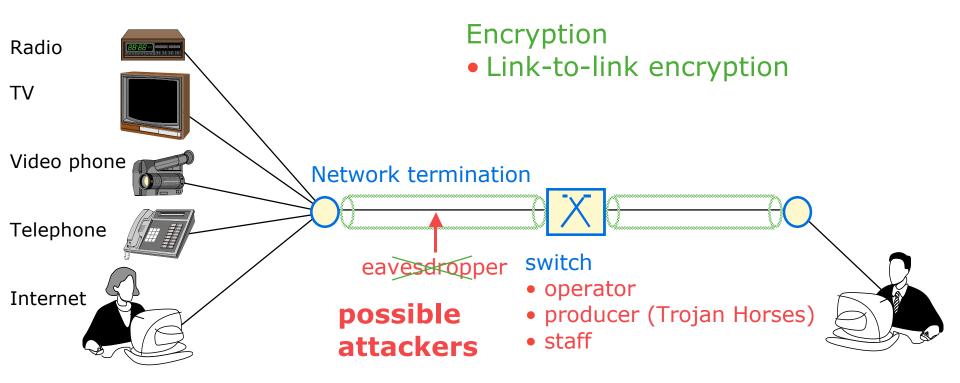


The Internet

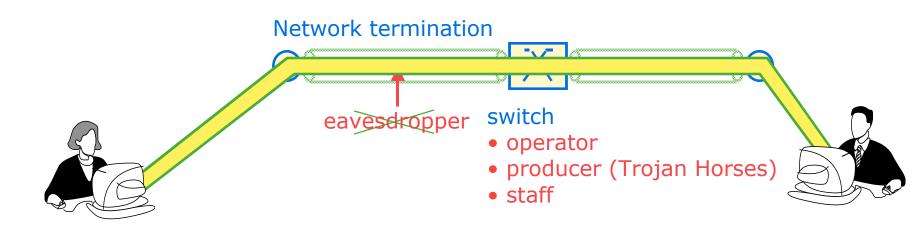


> "Access points"


Computer


Transmission

> Observation of users in switched networks


>>Observation of users in switched networks

>>> Observation of users in switched networks

Encryption

- Link-to-link encryption
- End-to-end encryption of contents

Problem – Traffic data:

Who communicates with whom, how long, where? Who ist interested in which contents?

We need concepts that hide traffic data (or avoid it).

Confidentiality of content by means of Encryption

% Symmetric Encryption, e.g. DES, IDEA, AES

- Both communication partners share a secret key for encryption and decryption
- Security is based on a "chaos machine"
- ∞ Key length approx 128 bits
- **#** Asymmetric Encryption (Public Key Encryption), e.g. RSA
 - ➣ Each user generates a key pair:

public encryption key

- Security is based on hard problems in number theory
- ➣ Key length > 1024 bits
 - new: elliptic curve cryptography approx. 160 bits
- **%** Well-known encryption software:
 - ▷ Pretty Good Privacy
 - ▷ http://www.pgp.com

> Pretty Good Privacy (PGP)

		PGPkeys				DE			
	X × 4 6 9 7 8 7 8 7						http:	//www.pgp	.com
	Name	Validity	Trust	Size	Description				
	🔎 Gerrit Bleumer <bleumer@acm.org></bleumer@acm.org>			2048/102	4 DH/DSS Public Key				
	🖙 Gerrit Bleumer <bleumer@acm.org></bleumer@acm.org>			1024	RSA Legacy Public	Hann	os Fodorrath (fodor	rath@inf.tu-dresden.de> N	n 🗏 🖬
	🖙 Gregor Goessler <ukjn@rz.uni-karlsruhe.de></ukjn@rz.uni-karlsruhe.de>	0		1024	RSA Legacy Public			ruthennitu uresueniuez iv	0 = 🖂
	🖙 Gritta Wolf <wolf@ibdr.inf.tu-dresden.de></wolf@ibdr.inf.tu-dresden.de>			2048	RSA Legacy Public	/ Genera	al \		II
	🖙 Guntram Wicke <gw3@irz.inf.tu-dresden.de></gw3@irz.inf.tu-dresden.de>			1024	RSA Legacy Public		D: 0×59B6FB01		
	🔎 Guntram Wicke <g-wicke@itsec-debis.de></g-wicke@itsec-debis.de>			2048/102	4 DH/DSS Public Key	Tun	e : RSA Legacy		
	🖓 Hannes Federrath <federrath@inf.tu-dresden.de></federrath@inf.tu-dresden.de>			2048/102	4 DH/DSS Key Pair		e: 1024		
	🖓 🖓 Hannes Federrath <federrde> NO LEGAL RELEVANCE</federrde>			1024	RSA Legacy Key P			60	
	🖓 Helmut Kohl <kohl@saumagen.net></kohl@saumagen.net>			2048/102	4 DH/DSS Key Pair		d: 18.08.1997		
	🖙 Hendrik Tews <tews@tcs.inf.tu-dresden.de></tews@tcs.inf.tu-dresden.de>			512	RSA Legacy Public	-	s: Never	des	
	Secret E-Mail Messa				DH/DSS Public Key	Ciphe	r : IDEA		
	Secret E Man Messai	JC			RSA Legacy Public				
	Yon: (federrath@inf.tu-dresden.de (Hannes Fed	errath)	<u>+</u>		DH/DSS Public Key	Chang	e Passphrase		
	An: 🙋 Helmut.Lampshade@domain.com				RSA Legacy Public	-	rprint		
	Cc:				DH/DSS Public Key	skydive peachy	hazardous determine	chairlift inventiv dreadful October	e
	Betreff: Secret E-Mail Message				RSA Legacy Public	surmou	nt bifocals	Burbank direction	
ĸ					RSA Legacy Public	afflict	midsummer	offload everyda	У
V	Anlagen: <i>keine</i> BEGIN PGP MESSAGE				RSA Legacy Public			Hexadecii	nal
	on: PGPfreeware 7.0.3 for non-commercial use	<http: td="" u<=""><td>ww.pgp.c</td><td>om></td><td>RSA Legacy Public</td><td></td><td></td><td></td><td></td></http:>	ww.pgp.c	om>	RSA Legacy Public				
HOCMA	8odjduHYRExAQP/Yv6M/hBj0m3r5pXSzXWw31Ezvi1bGR	νω×Ρωκο[)c8o7x		RSA Legacy Public	Invalid	t Model Valid	Untrusted Truste	
dna99	YSYPcT66gEhal2NJNUCDwKX/5Ytxy5SQgnKdHw4SQu85P W0qDmrimGzbhY3Lrevumiq7p4bTqCDwmtotC0vYdo3AGe	+UD j TCUPL	.RsQ80		RSA Legacy Public		licit Trust		°
ARcTU	k6YAB8fBWynlvbwlsyKKjoSRH986hySKKCgQF+3pAq0oq	WvŤCa0fTF	MKTeu		RSA Legacy Public				
	TOnGDmqj/hyklzuHv8oPSknGVN+Qa0nUD4lmSAx+YLYJb 9SAXg1EnZWBmmSO9o36zVmo6Zo5gjLFwuHDgxdSRvRa60				RSA Legacy Public				
V3Dp3	8714Võae+4nomRAlmtxPr4wm2B5Ľ+s9P0wTMzY6rbPkw/ u3bhRmDh5vQzMvU2BgEJhZOjkNyBP07fh+r3tnxn017yb	Crm61hCZa	drrzĒe						
MWGJn	Jqts2B3fgtQinINRNClMXDxQMVaxlt81ZDMCd1qky3lkK	ppuak4ozi Eb4bk=	заран ј						
=4W×r	END PGP MESSAGE	_							
		P	Pkeys	Encrypt	Sign Encrypt & Sig		/pt/Verify Vipe	Yipe Free Space	

> Protection against observation?

% New challenges:

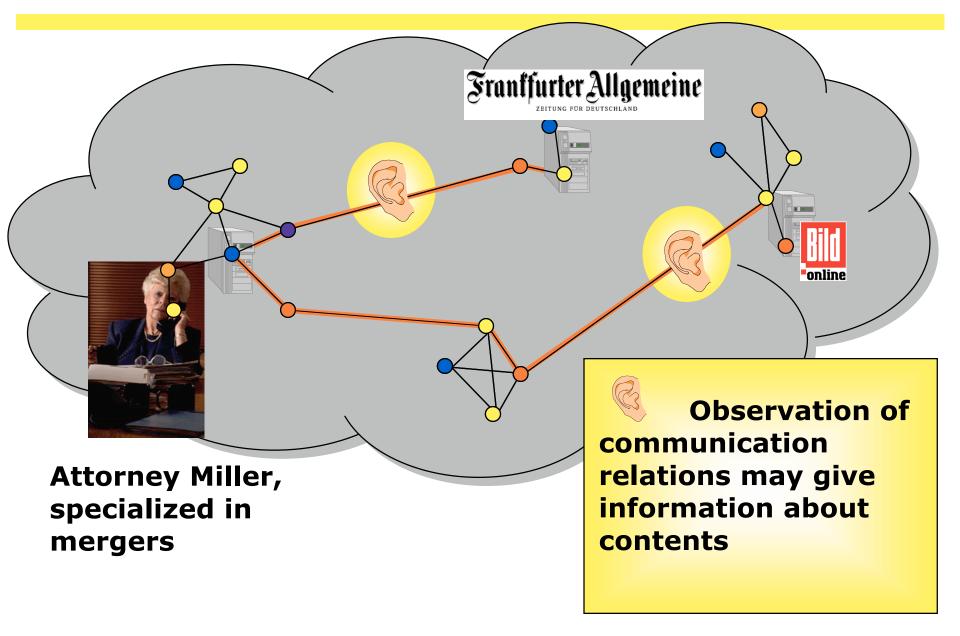
- \boxtimes Privacy in the Internet:
- Protection against "Profiling" and commercial use of private data without consent.
- **#** Part of Privacy; here: confidentiality of traffic data
- **#** Encryption does not help against observation

Solution Soluti Solution Solution Solution Solution Solution Solution S

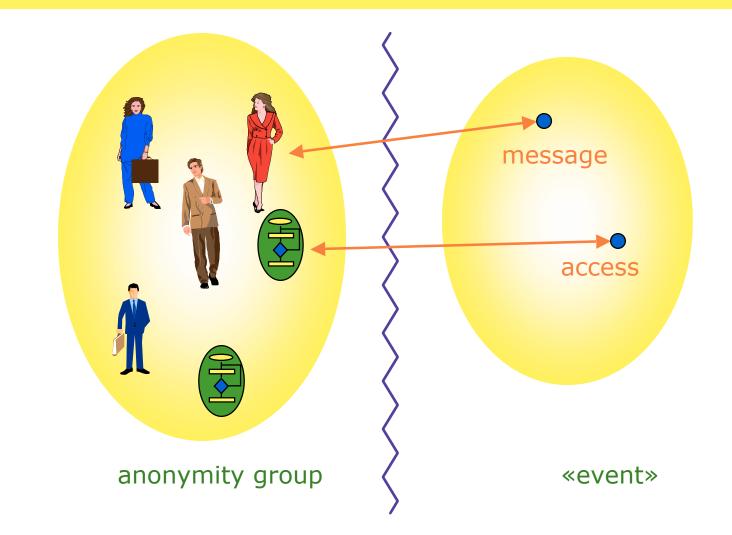
Anonymity:

➣ The sender and/or recipient stay anonymous to each other.

Unobservability:


All parties (incl. network operators) cannot trace communication relations.

Sending and/or receiving of messages is unobservable


% Remarks:

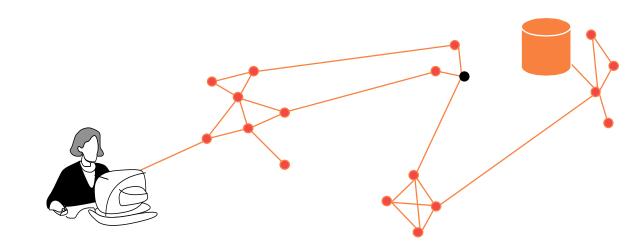
- A single event caused by a single user cannot be anonymous or unobservable.
- \boxtimes We need a group of users where all users behave similarly.

> Why encryption is not enough

> Anonymity and unobservability

Everybody can be the originator of an «event» with an equal likelyhood

> Our attacker model


Attacker may:

- Solution Soluti Solution Solution Solution Solution Solution Solution S
- Send own messages,
- ➡ operate anonymity services (all but one ...)
- ∞ operate a server (web server)

% Attacker cannot:

- ∞ break into cryptographic systems,
- ∞ attack the users personal machine,
- ▷ has limited time and computing power

Assuming a very strong attacker is the best way to achieve real security.

Existing systems for HTTP (real-time communication)

- **Simple Proxies** (partly with filtering functions: Cookies, JavaScript, active content)
 - ▷ Anonymizer.com (Lance Cottrel)
 - 🔊 Aixs.net
 - ➢ ProxyMate.com (Lucent Personal Web Assistant, Bell Labs)
 - ➢ Rewebber.com (Andreas Rieke, Thomas Demuth, FernUni Hagen)
 - ➢ Anon proxy (Hannes Federrath)
 - ➣ Each appropriate configured web server with proxy functions
- **%** Systems considering traffic analysis
 - Scrowds (Mike Reiter, AT&T)
 - Onion-Routing (Naval Research Center)
 - ▷ Freedom (Ian Goldberg, Zero-Knowledge Inc.)
 - ➣ WebIncognito (Privada)
 - ➢ WebMixes (TU Dresden)

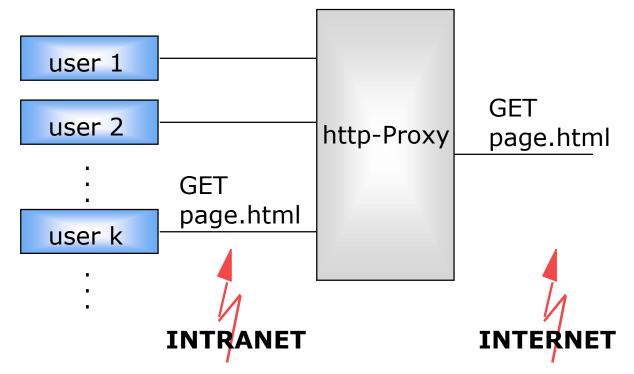
> Simple Proxies

- Server has no information about the real originator of request
- **%** No protection against the operator
- **X** No protection against traffic analysis

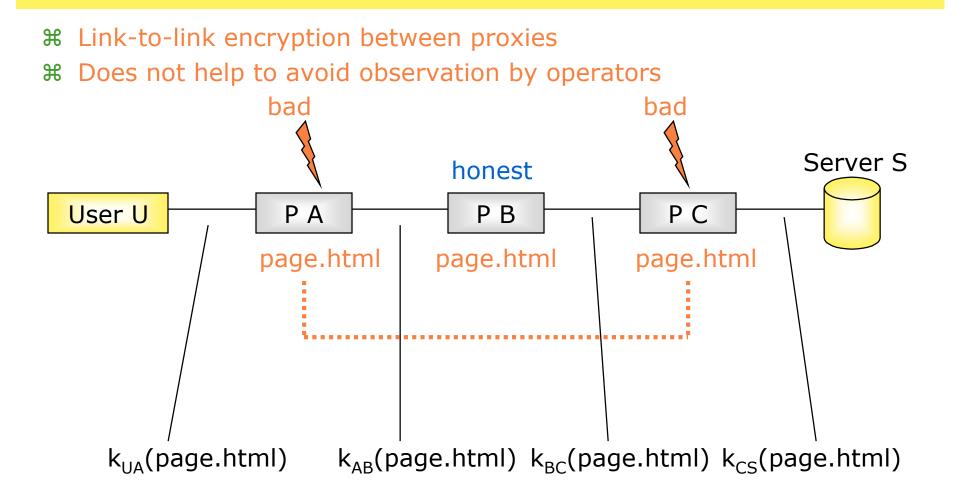
Principles for Web access:

1. Form-based

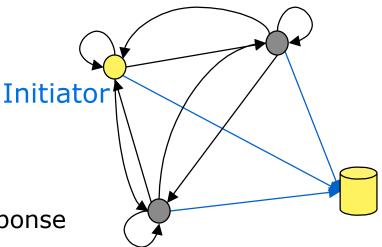
- S Type in URL
- Proxy gets the URL on behalf of user


2. Change browser config

🗵 "use proxy"

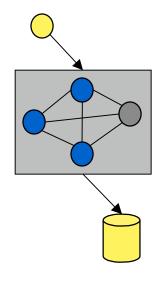

Netscape: Anon proxy	
Adresse : 퀧 http://ikt.inf.tu-dresden.de/~feder/cgi-bin/a.cgi	
Anon proxy http://ikt.inf.tu-dresden.de/~feder/cgi-bin/a.cgi	
SECURITY FOR THE WEB SURFER :	
Surfanonymously to http://www.inf.tu-dresden.de/~hf2/anon/	
SECURITY FOR THE WEB PUBLISHER :	
Encode location http://www	
© 1999 by Hannes Federrath	-
	_//

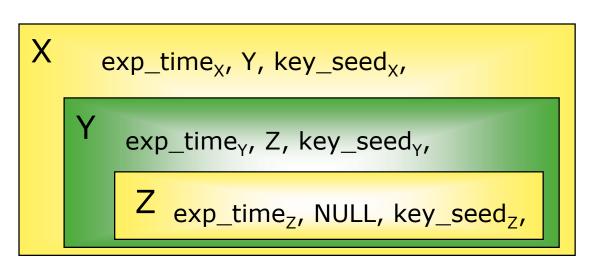
- **#** Proxy gets to know all contents!!!
- **#** Observation is possible
 - Iming correlation of incoming and outgoing requests ∞
 - Correlation by message length and coding
 - Simple encryption between user and proxy is not sufficient because of the correlation of timing and length and it does not help against the operator



> Cascading Simple Proxies

> Crowds


- # Each communication request is sent directly to the server with a probability of P
- # Else the request is sent to another user (Jondo) of the crowd (with 1-P)
- **%** Symmetric link-encryption between the users
 - Avoid linkability
 - ➢ However: timing coincidence
- **#** Enbedded objects (images etc.) are requested by the last Jondo
 - Suppress bursts of requests
- **%** Security goal:
 - Every user can deny that he or she is the originator of a certain request
- **%** Problem:
 - Jondos get to know about content of a request and response



> Onion Routing

US Naval Research Center

- # Hiding of routing information in connection oriented communication relations
- **%** Nested public key encryption
- **#** Uses an expiration_time field to reduce cost of replay detection
- % Dummy traffic between MIXes (Onion Routers)
- **#** First/Last-Hop-Attacks:
 - Timing correlations
 - ☑ Message length

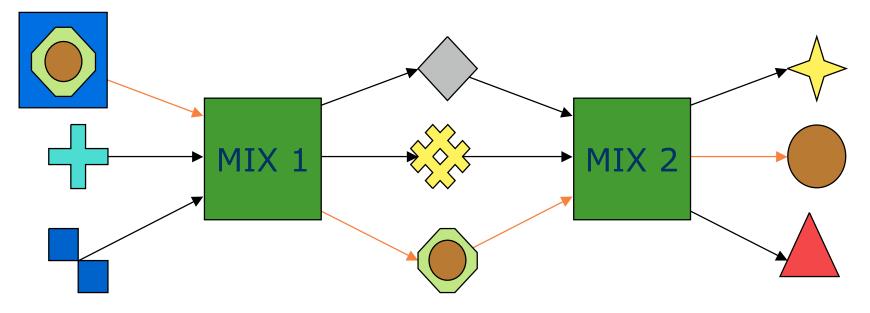
- **#** Systems considering traffic analysis have to avoid all of the following possible attacks
- MIX

Timing attacks: Observe the duration of a communication by linking the possible endpoints of a communication and wait for a correlation between the creation and/or release event at all possible endpoints.

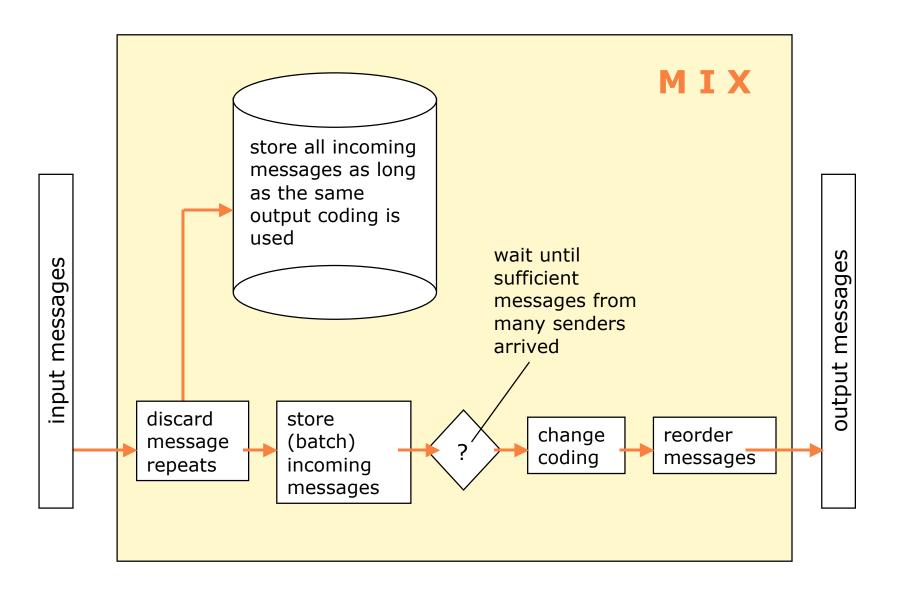
Message volume attacks: Observe the amount of transmitted

data (i.e. the message length) and correlate input and output.

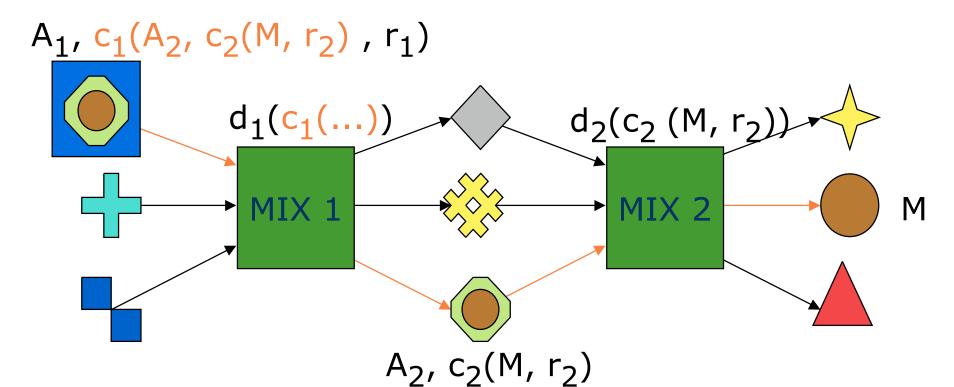
- Flooding attacks: Each message can only be anonymous in a group of messages (batch). Under normal circumstances, each sender sends one message per batch. A good system has to avoid that the batch can be flooded by an attacker in order to separate a certain message.
- Linking attacks: Because of online/offline-periods of the users an attacker may create intersections of anonymity groups by
- observation over a long period.


At this time, no existing system withstands all attacks

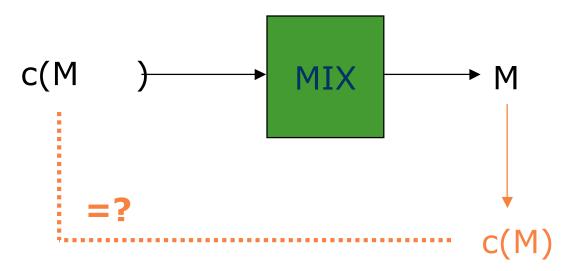
% Basic idea:


- Sample messages in a batch, change their coding and forward them all at the same point oftime but in a different order. All messages have the same length.
- S At least one Mix should not be corrupt.

% Then:

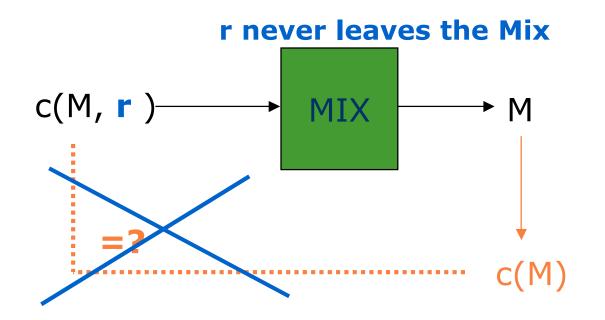

Perfect unlinkability of sender and recipient.

> How a MIX works

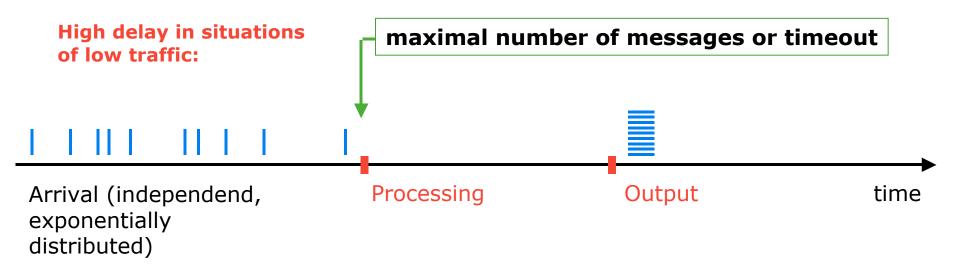

- Solution States Sta
- \bowtie c_i(...) is an encrypted message for Mix i (everybody can encrypt messages for Mixes using this function)
- \boxtimes d_i(...) is the private function of Mix i to decrypt messages (only Mix i can decrypt his messages, nobody else)
- \boxtimes A_i is the address of Mix i; r_i are random numbers (dropped by the Mix)
- \boxtimes M is the message for the recipient (including his address)

> Mixes: Why do we need random numbers?

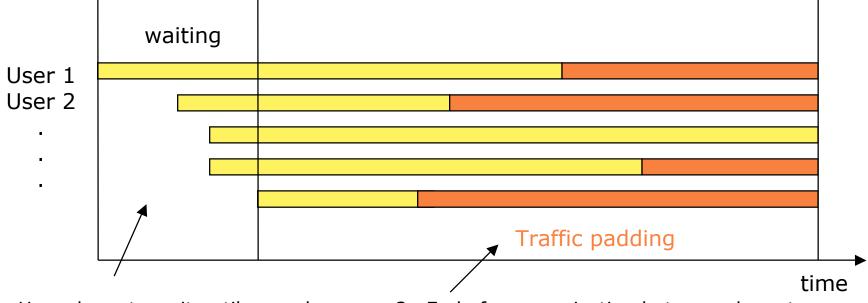
If no random numbers r used:


- Everyone can encrypt the output messages of a Mix because c(...) is public
- ➣ Compare results with all incoming messages
- Need a indeterministic encryption scheme (or use random numbers)

>> Mixes: Why do we need random numbers?

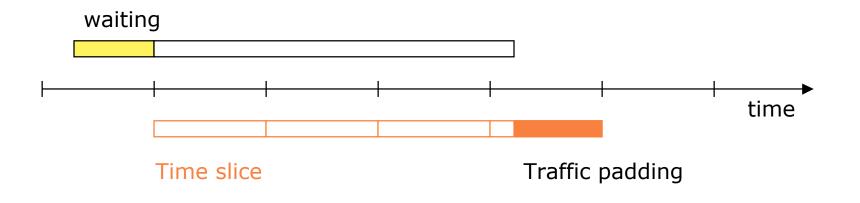

If no random numbers r used:

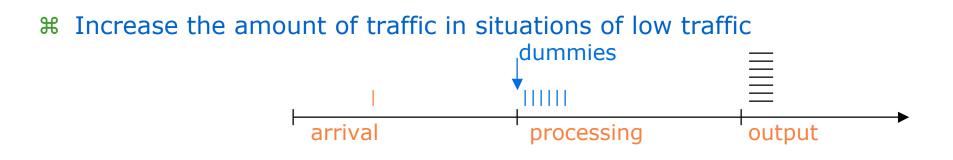
- Everyone can encrypt the output messages of a Mix because c(...) is public
- ➣ Compare results with all incoming messages
- Need a indeterministic encryption scheme (or use random numbers)


The problem of anonymous real-time communication

- **#** Plain Mixes are good for non-real-time communication: E-Mail
- # But not sufficient for real-time communication: Web, Ftp, Internet Phone
 - Sampling of messages means high delay, because a Mix is waits for (another) messages the most of time.
 - Message lengths vary in a very large interval or no support of connection oriented services
- **#** We need a few improvements

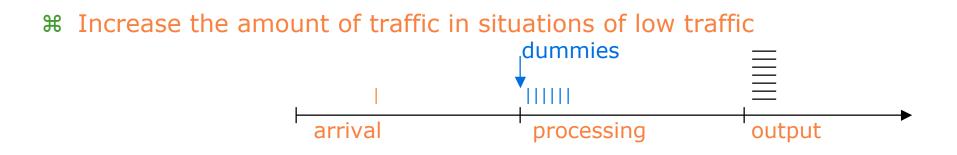
> Traffic padding


- **#** Hide from the attacker, when a certain communication ends
- But: nobody knows, when the last user wants to end his communication


- Users have to wait until enough users want to communicate (creation of the anonymity group) Example: 5 users
- 2. End of communication but users have to send random data until the last user has finished his connection
- However: Nobody knows when the last user wants to end his communication – because nobody can distinguish real traffic from traffic padding

> Time slices and traffic padding

- Chopping of long communications into small pieces (connections or packet size)
 - Unobservability in the group of all processed messages at one time slice
 - Solution Soluti Solution Solution Solution Solution Solution Solution S
 - ➣ No linkability of time slices



> Dummy traffic

- **#** Sometimes the number of users is not sufficient to fill the batch.
- **#** This can happen in times of low traffic.
- % In that case,
 - ∞ either the use has to wait until enough messages arrive (leads to likely high delay)
 - \boxtimes or accepts, that he cannot remain anonymous,
 - \boxtimes or other users send dummy traffic.
- **Bef.: Dummy traffic.** A user sends messages at all times. When he doesn't want to send messages, he sends random numbers. Nobody can make a distinction between real encrypted messages and the random numbers.

>> Dummy traffic

Dummy traffic only between Mixes is not sufficient

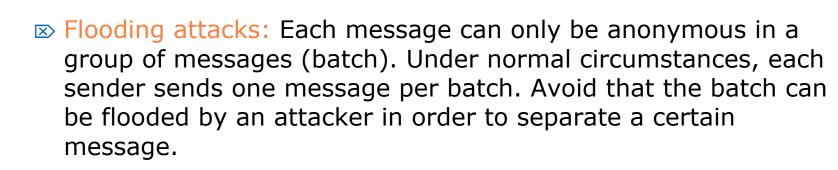
users
$$Mix = Mix = Mix$$

Dummy traffic has to be generated by the users

users
$$Mix = Mix = Mix$$

> Remaining attacks

Systems considering traffic analysis have to avoid all of the following possible attacks:



Timing attacks

➢ Message volume attacks

2

Linking attacks: Because of the online/offline-periods of the users an attacker may create intersections of anonymity groups by observation over a long period.

> The Problem of flooding Mixes

- **#** Batch size n
- # Flooding: Attacker tries to flood the Mix with his own (n-1) messages, except one message that he wants to observe
- # Attacker knows (n-1) outgoing messages. The only unknown message is the observed message.
- **#** In that case, the sender and recipient are uncovered.
- **%** Solution (first hack):
 - Solution Not State S
 - Now, the attacker needs help of the (n-1) other users. However, we assume the users will never harm themselves.
 - ▷ Very similar to an anonymous payment system.
 - \boxtimes Digital coin not traceable neither by the Mix nor the Bank.
 - Additionally, solves the problem of payment for anonymity systems

> The Problem of long-term observation of users

% Supposed:

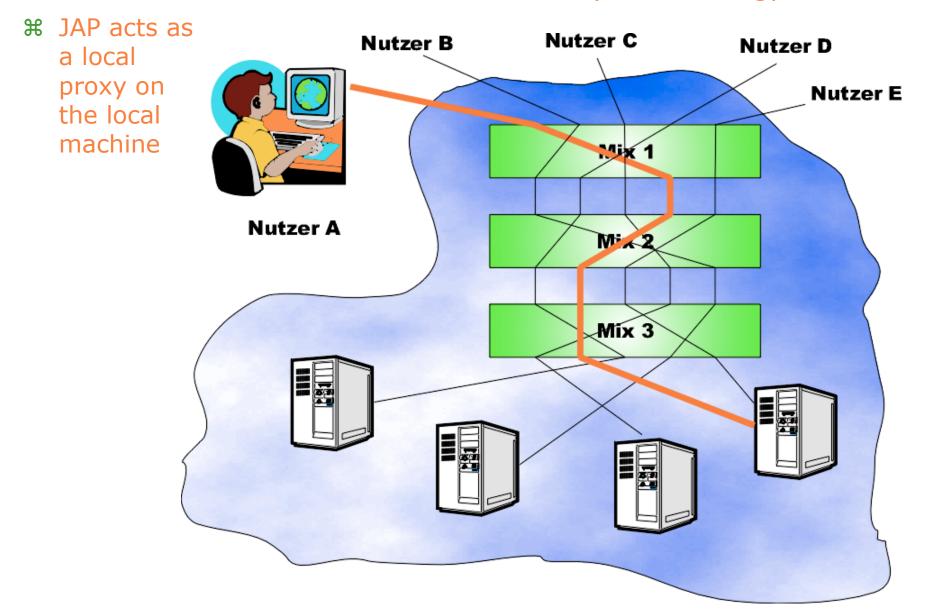
- ➢ A user shows a nearly constant online-offline behavior (from 8 -10 PM online everyday)
- Requests certain contents (web pages, his e-mail account) during this time
- ➢ A lot of other people are also online and use the anonymity service
- # Attacker observes all communication links and servers, except the anonymity service over a long time period.
- **X** Long-term observation leads to intersections of anonymity groups and uncovers the users behavior.
- How long it takes that an attacker to link the user actions with a high probability depends on the size of the anonymity group and its behavior.
- **%** Simulation of that attack
- **%** No good solution at this time to defend this attack.

> Web Mixes: Anonymous real-time communication

University of Technology Dresden

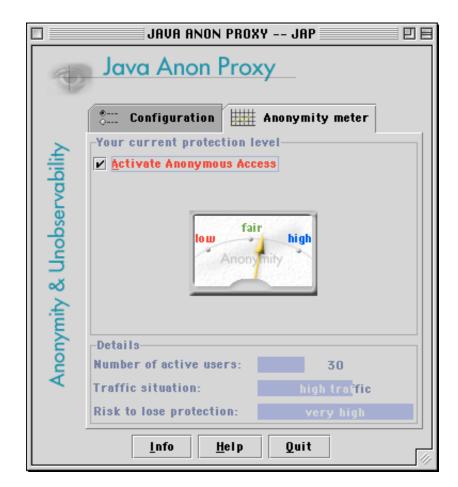
Anonymous and unobservable transport system

- Mix-based proxies with additional functions to provide real-time communication
- Should withstand strong (big brother) attacks
- **#** Information service (impossible to operate a perfect Anon system)
 - Solution Current level of protection (Anonymity level)
 - Trade-off between performance and protection should be decided by the user
- Comparison of the second se
 - Solve the software: Java (platform independent)
 - Server software: C/C++ (Win/NT, Linux/Unix)
- **#** Technical and jurisdictional knowledge to serve legal issues
- **#** Test application:
 - ➢ anonymous drug counseling site, supervised by an counselor, but without revealing identities

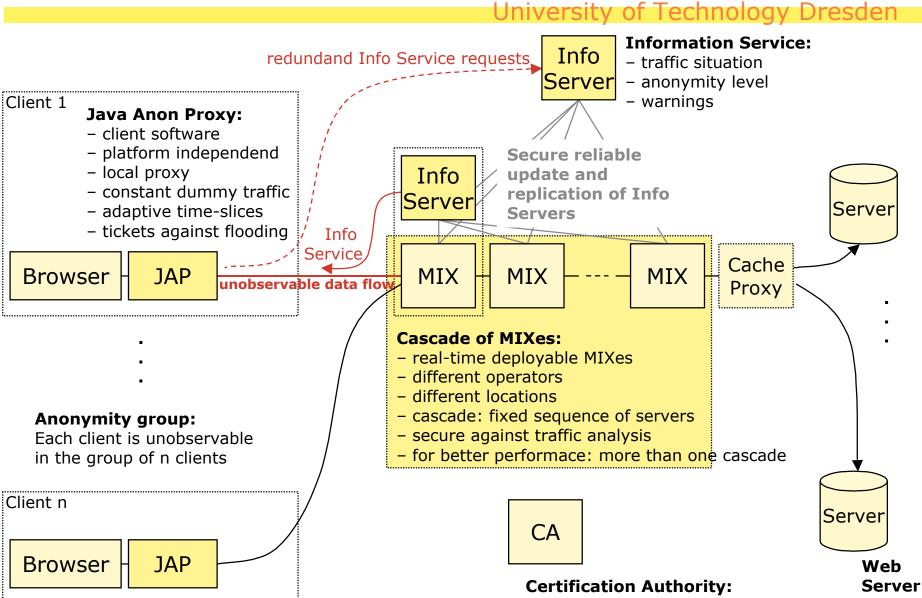

> Client software

University of Technology Dresden

JAVA ANON PROXY JAP Java Anon Proxy String Configuration IIII Anonymity meter Your current protection level Activate Anonymous Access			JAP.inf.tu-dresden.de				
<u>a</u>			Identity man	agement 📃 🗉 🗄			
			My communication partners				
l -8	low high	Туре	Communication partner	Pseudonym			
Ľ.	Anonymity	E-Mail	<default value=""></default>	provide my identity			
øð		E-Mail	cryptolist@conspiracy.net	mr.x@mabuse.net			
~		E-Mail	heinrich@tu-dresden.de	provide my identity			
l it		E-Mail	oliver.berthold@gmx.de	provide my identity			
	-Details-	E-Mail	help@counseling.net	public key pseudonym			
b	Number of active users: 30	WWW	<default value=""></default>	anonymous			
4		WWW	http://www.yahoo.com	via cookie			
	Traffic situation: high traffic	WWW	http://www.tiss.com	537hf9			
	Risk to lose protection: very high	WWW	http://www.maczone.com	hfederrath			
		News	<default value=""></default>	mr_spock@uss-enterprise.spc			
ÍI	<u>I</u> nfo <u>H</u> elp Quit	News	alt.talk.life	anonymous 🗸 🗸			
			New Delete	Change Go to			
			Info Help	Cancel 0			

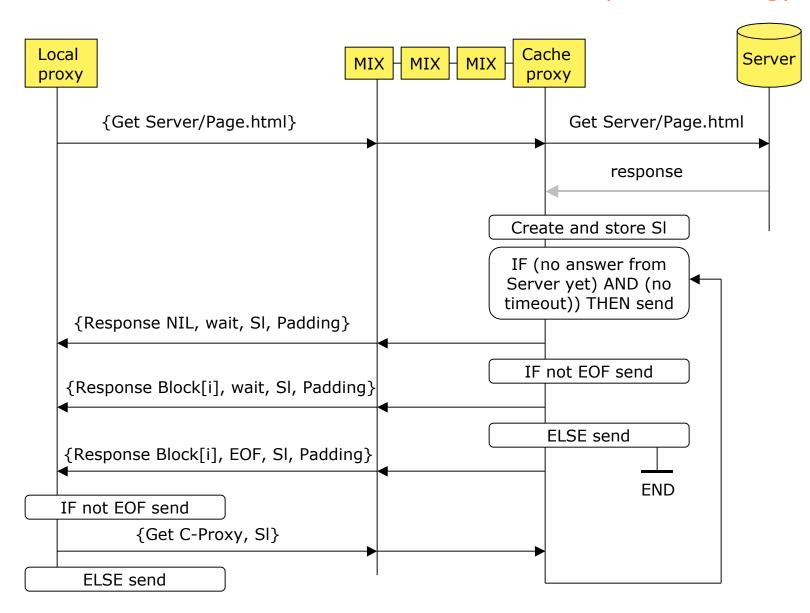

> How does it work?

University of Technology Dresden



Some practical experiences University of Technology Dresden JAP.inf.tu-dresden.de

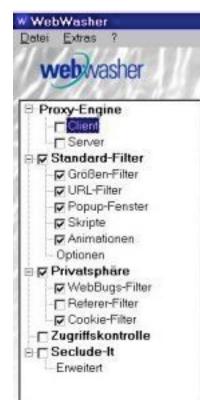
- First test version has been launched in October 2000
- % Full service has been running since February 2001
- Hybrid encryption system of 128 bit encryption by AES (Rijndael) and RSA/1024 bit public key encryption
- **#** 3 mix casades are running
- **#** Busy hour: 500 users at the same time are online
- **#** about 5000 8000 users
- # about 120 gigabyte troughput per week


> Architecture of Web Mixes

- independend of Web Mixes System
- issues certificates of public keys

> Time Slice protocol

University of Technology Dresden


> Some remarks about active content

Deactivate Cookies in your browser

- ➣ Web server can track all activities of a user
- Solution Additional filter software is very useful

- ➢ Filter additional "bugs" that reveal your behavior
- Example:very small (1x1) transparent pictures on a website
- **#** Deactivate all sorts of active content in your browser
 - S Java, JavaScript, ActiveX
 - ➢ IP-Address can be observed by an attacker
 - Unauthorized access to hard drive by ActiveX components

Anonymity and unobservability in the Internet is hard to realize.

- # All commercial systems like Anonymizer, Freedom etc. suppose a weaker attacker model. They base their model on the assumption, that the strong attacks are not realistic in the Internet.
- In 95 or more percent of observation this assumption may be right, but not in the remaining 5 or less percent. Let's give an example of what we mean:
 - Assuming that an encryption tool sufficiently encrypts 99 of 100 messages, but in one case the message is sent in clear text. Nobody will rely on that tool...
- **#** That is exactly the situation using one of the existing systems.
- However, in some cases (or to defend some attacks) we do presently not know how a secure system has to be built.

> Political and social context

Legal enforcement of communications

German Telekommunikationsüberwachungsverordnung (TKÜV)

http://www.bmwi.de/Homepage/download/telekommunikation_post/TKUEV-Entwurf.pdf

European Cybercrime Convention

http://conventions.coe.int/treaty/en/projets/cybercrime.htm

Privacy laws

- ➢ German (new) Bundesdatenschutzgesetz (BDSG)
 - http://www.bfd.bund.de/information/bdsg_hinweis.html

➣ European directive on privacy protection

http://europa.eu.int/eur-lex/en/lif/dat/1995/en_395L0046.html

Open question

Bow much privacy (anonymity) is valuable for the society?

>>> Privacy and Anonymity

Anonymous communication secure against traffic analysis

INFORMATION ONLINE? http://www.inf.tu-dresden.de/~hf2/anon/ Demonstrations Downloads